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Relearning Sound Localization with a New Ear

Marc M. Van Wanrooij and A. John Van Opstal
Department of Medical Physics and Biophysics, Institute for Neuroscience, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands

Human sound localization results primarily from the processing of binaural differences in sound level and arrival time for locations in the
horizontal plane (azimuth) and of spectral shape cues generated by the head and pinnae for positions in the vertical plane (elevation). The
latter mechanism incorporates two processing stages: a spectral-to-spatial mapping stage and a binaural weighting stage that determines
the contribution of each ear to perceived elevation as function of sound azimuth. We demonstrated recently that binaural pinna molds
virtually abolish the ability to localize sound-source elevation, but, after several weeks, subjects regained normal localization perfor-
mance. Itis not clear which processing stage underlies this remarkable plasticity, because the auditory system could have learned the new
spectral cues separately for each ear (spatial-mapping adaptation) or for one ear only, while extending its contribution into the contralat-
eral hemifield (binaural-weighting adaptation). To dissociate these possibilities, we applied a long-term monaural spectral perturbation
in 13 subjects. Our results show that, in eight experiments, listeners learned to localize accurately with new spectral cues that differed
substantially from those provided by their own ears. Interestingly, five subjects, whose spectral cues were not sufficiently perturbed,
never yielded stable localization performance. Our findings indicate that the analysis of spectral cues may involve a correlation process
between the sensory input and a stored spectral representation of the subject’s ears and that learning acts predominantly at a spectral-

to-spatial mapping level rather than at the level of binaural weighting.
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Introduction

From the basilar membrane up to the cortex, the auditory system
is tonotopically, rather than spatially, organized. As a result,
sound localization relies on implicit cues in the sound-pressure
wave (Blauert, 1997). Head size and resulting acoustic shadow
impose interaural differences in sound-arrival time and level that
relate to locations in the horizontal plane (azimuth) (Blauert,
1997). In addition, the pinnae distort the high-frequency sound
spectrum, yielding spectral-shape filters that vary uniquely with
locations in the horizontal and vertical plane (elevation) (Old-
field and Parker, 1984a; Wightman and Kistler, 1989; Middle-
brooks and Green, 1991; Middlebrooks, 1992; Blauert, 1997). Itis
generally thought that independent binaural and monaural neu-
ral pathways process the different localization cues (Oldfield and
Parker, 1986; Yin, 2002; Young and Davis, 2002).

Data suggest that correct azimuth localization can only be
achieved through binaural hearing, because the unilaterally deaf
(Van Wanrooij and Van Opstal, 2004), listeners exposed to ear
plugging (Oldfield and Parker, 1984b), or dichotically simulated
monaural hearing (Wightman and Kistler, 1997) are very poor in
azimuthal localization. Some monaurally deaflisteners, however,
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can localize elevation with their normal ear (Slattery and Middle-
brooks, 1994; Van Wanrooij and Van Opstal, 2004). Although
spectral shape constitutes a monaural localization cue, studies
have shown that perceived elevation is partly attributable to bin-
aural interactions, in which the contribution of each ear is
weighted by stimulus laterality (Fig. 1A, B). For example, mon-
aural pinna occlusion causes elevation deficits, not only on the
side of the perturbed ear, but also well into its contralateral hemi-
field (Oldfield and Parker, 1984b; Humanski and Butler, 1988;
Morimoto, 2001; Hofman and Van Opstal, 2003).

The complex relationship between pinna geometry and
spectral-shape cues, together with the fact that human ears
change size and shape throughout life, suggest that adaptive
mechanisms in the auditory system should preserve calibration of
sound-source elevation. Indeed, a study in which binaural molds
perturbed the spectral-shape cues demonstrated that listeners re-
learned localization within a few weeks (Hofman et al., 1998).
Interestingly, listeners learned the new spectral cues without in-
terfering with the original ones, because they could localize with
both their own and with occluded ears.

As outlined in Figure 1, A and B, this remarkable adaptive
response can in principle be explained by two different mecha-
nisms. First, the auditory system could have learned new spectral
representations, separate for each ear (adaptation at a spectral-
to-spatial mapping stage). Alternatively, the binaural weighting
could have been adjusted such that one ear dominates both ipsi-
lateral and contralateral space. To dissociate these possibilities,
we investigated sound-localization behavior after adaptation to a
unilateral mold (FM listening) under four different hearing con-
ditions: normal-ear listening (FF), a unilateral mold left or right
(MF, or FM), and listening with binaural molds (MM) (Fig. 1C).
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Figure1. Rationale.A, B, Conceptually, elevation processing consists of two stages (Hofman

and Van Opstal, 2003): a spectral-to-spatial mapping stage and a binaural-weighting stage (W)
that combines information from both ears. Because both processes are nonlinear, the order in
which they occur matters, and adaptation at either stage leads to different predictions for our
control experiments. In scheme A binaural weighting acts on monaural elevation estimates,
whereas in scheme B it combines spectral shape inputs from the ears into binaural spectral
shapes. HRTF, Head-related transfer functions. (, Prediction of elevation performance on the
adapted side after complete right-ear mold (FM) adaptation for four different hearing condi-
tions, if adaptation occurred at either the spatial mapping stage (left) or the binaural-weighting
stage (right) of either scheme. In the latter case, the contribution of the nonperturbed, left ear
has increased and accounts for improved performance on its contralateral, right side. Conse-
quently, an additional mold in the left ear (MM hearing) abolishes elevation performance on the
right (right panel). If adaptation occurred at the spatial-mapping stage, MM hearing will not
affect localization on the adapted side (left panel). Contra, Contralateral; Ipsi, ipsilateral.

Because the normal mappings are not lost, no effect on FF or MF
performance would be expected. The performance in the FM case
improves on the mold side because of the adaptation for both
stages in either scheme. Adjustments at the spatial mapping stage
of either scheme in Figure 1, A and B predicts that localization on
the adapted side remains accurate under MM listening. In con-
trast, changes at the binaural weighting stage preclude accurate
MM localization, because the increased weighting of the left ear is
then based on unknown spectra. Our results demonstrate that the
system can cope with monaural spectral perturbations and that
plasticity acts predominantly at the spectral-to-spatial mapping
stage.

Materials and Methods

Participants

Eleven listeners (ages 21-47 years) participated in the experiments.
Three participants (JO, JV, and MW) are from the laboratory and are
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experienced with sound localization studies. Two of these listeners (JO
and MW, the authors) each participated in two adaptation series with
different molds that were conducted 2 years apart. The other eight listen-
ers were naive paid volunteers and were given a short practice session to
localize sounds with head movements under open-loop conditions (i.e.,
no feedback was given to the actual performance of the listener), before
entering these experiments. All listeners had normal hearing [within 20
dB sound pressure level (SPL) of audiometric zero] as determined by an
audiogram obtained with a standard staircase procedure (10 tone pips,
0.5 octave separation, between 500 Hz and 11.3 kHz). None of them had
any auditory or uncorrected visual disorder, except for listener JO, who is
amblyopic in his right eye.

Apparatus

During the experiments, the listener was seated comfortably in a chair in
the center of a completely dark, sound-attenuated room (height X
width X length, 2.45 X 2.45 X 3.5 m?). The walls, ceiling, and floor and
every large object present were covered with black acoustic foam that
eliminated echoes for sound frequencies >500 Hz. The room had an
ambient background noise level of 25 dB SPL.

A total of 58 small broad-range loudspeakers (MSP-30; Monacor In-
ternational, Bremen, Germany) containing light-emitting diodes
(LEDs), were mounted on a thin wooden frame that formed a hemi-
spheric surface 100 cm in front of the listener at six eccentricities, R = (0,
15, 30, 45, 60, 75°), relative to the straight-ahead viewing direction [de-
fined in polar coordinates as (R, ®) = (0, 0°)] and at 12 different direc-
tions, ® = (0, 30, . .., 330°), where ® = 0° is rightward from the center
location, and @ = 90° is upward (for a simple illustration of the stimulus
layout, see gray background in Figs. 2, 12 A, B, 13). The lower three speak-
ers [at R = 75° and ® = (240, 270, 300°) ] were left out to create room for
the listener’s legs.

Head movements were recorded with the magnetic search-coil induc-
tion technique (Robinson, 1963). To that end, the listener wore a light-
weight (150 g) “helmet” consisting of two perpendicular 4-cm-wide
straps that could be adjusted to fit around the listener’s head without
interfering with the ears. On top of this helmet, a small coil was attached.
From the left side of the helmet, a 40-cm-long, thin aluminum rod pro-
truded forward with a dim (0.15 cd/m?) red LED attached to its end,
which could be positioned in front of the listener’s eyes. Two orthogonal
pairs of 2.45 X 2.45 m? coils and one pair of 2.45 X 3.5 m? coils were
attached to the edges of the room to generate the left-right (60 kHz),
up—down (80 kHz), and front—back (F-B) (40 kHz) magnetic fields. The
head-coil signal was amplified and demodulated (Remmel Labs, Ash-
land, MA), after which it was low-pass filtered at 150 Hz (model 3343;
Krohn-Hite, Brockton, MA) before being stored on hard disk at a sam-
pling rate of 500 Hz/channel for off-line analysis.

Auditory stimuli

Acoustic stimuli were digitally generated using Tucker-Davis Technolo-
gies (TDT) (Alachua, FL) System II hardware, with a TDT DA1 16-bit
digital-to-analog converter (50 kHz sampling rate). A TDT PA4 pro-
grammable attenuator controlled sound level, after which the stimuli
were passed to the TDT HB6 buffer and finally to one of the speakers in
the experimental room.

All acoustic stimuli consisted of Gaussian noise and had 0.5 ms sine-
squared onset and offset ramps. The auditory stimuli were either broad-
band (BB) (flat characteristic between 1 and 20 kHz) or high-pass (HP)
(high-pass filtered at 3 kHz) stimuli with a duration of 150 ms. Sound
intensities ranged from 30 to 60 dB SPL (see below). Absolute free-field
sound levels were measured at the position of the listener’s head with a
calibrated sound amplifier and microphone (BK2610/BK4144; Bruel &
Kjaer, Norcross, GA).

Molds

Listeners participated in a long-term adaptation experiment, which re-
quired them to wear a lightweight and precisely fitting custom-made
mold in the concha cavity of either their left or right pinna for an ex-
tended period of time. The molds were manufactured by filling the con-
cha with rubber casting material (Otoform Otoplastik-K/c; Dreve, Unna,
Germany). Molds for both ears were produced, because control experi-
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Table 1. Subject database
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the maximum correlation is not necessarily

Subject  Age (years) Mold Time (d) Number of tests Bandwidth Intensities (dB SPL) DTFs  found on the main diagonal (i.e., at €, = ¢,).
The autocorrelation matrix of a DTF set is
Jon 45 Right 3 10 HP, BB 30,40,50 symmetric and measures how well the DTFs of
Mw1 25 Right 49 16 HP, BB 30,40,50 a given set discriminate the different elevation
DH 2 Left 12 9 BB 40,50,60 + angles. A typical ear yields a correlation of 1.0
10 47 Right 7 6 BB 40,50,60 + only on the main diagonal, indicating that the
W 27 Right 14 19 8B 40,50,60 + DTF for a given elevation is unique (Hofman
KA 21 Right 1 8 BB 40,50,60 and Van Opstal, 1998).
LC 26 Left 11 8 BB 40,50,60 +
MV 3 Right M 8 BB 40,50,60 + DTF similarity index
MW 27 Right 36 39 BB 40,50,60 To quantify with one scalar the overall similar-
RK 27 Right 9 8 BB 40,50,60 ity of the sets of DTFs from the free ear and the
SC 23 Right " 8 BB 40,50,60 + ear with the mold, we constructed a similarity
SW 26 Right n 8 BB 40,50,60 index, I, in the following way: first, for a
TG 27 Left 1 8 BB 40,50,60 given elevation angle, €,,,, the SD in the correla-

Age, Listener's age during experiments; Mold, side where mold was worn during the adaptation period; Time, length of adaptation period in days; Number of
tests, number of tests during the adaptation period (excluding the pre-adaptation and post-adaptation tests); Bandwidth, bandwidth of the stimuli presented
during tests (BB, broadband noise; HP, high-pass noise); Intensities, stimulus levels tested. In the DTFs column, + indicates whether DTFs were measured for

that listener.

ments were run with a mold in either ear (see below). The ear canals were
kept free, and, before its hardening, the material could be easily shaped in
situ to exactly fit the pinna cavity.

Measurements of directional transfer functions

Directional transfer functions (DTFs) of the ears with and without the
molds were measured to verify that the ear with the mold still received
specific elevation-dependent spectral features for six listeners (see Fig. 5,
Table 1) for 25 elevations in the midsagittal plane (compare with Fig. 5).
This was done by presenting a minimum-peak broadband frequency-
modulated sweep (0.2-20 kHz, flat-amplitude spectrum, Schroder
phase, 20 ms duration, 25 sweep repetitions per stimulus, of which the
first and the last sweep had an onset and offset ramp, respectively)
(Schroder, 1970; Wightman and Kistler, 1989; Hofman and Van Opstal,
1998) and recording the sound-pressure level through a thin silicone
tube attached to a miniature microphone (model EA1842; Knowles,
Itasca, IL) at the entrance of the subject’s ear canal.

DTFs and their correlations

From the measured frequency-modulated Schréder-sweep responses at
the ear-canal entrance, we applied a fast Fourier transform (FFT) on the
sound-pressure signal, averaged across 23 sweeps (excluding the first and
last sweep that contained the onset and offset ramps) with the speaker at
each of the 25 elevations. From the FFT, we then determined the ampli-
tude spectrum of the signal for each elevation angle. The DTF for, say,
elevation €,, was obtained by dividing each amplitude spectrum by the
grand average across all 25 elevations:

DTE(sy, f) = N-M

s (1)
> [FET(e;, f)

i=1

with N being the number of elevation angles (in our experiments, N =
25) (see Fig. 5). Each DTF contained 512 frequency bins (from 0 Hz to 25
kHz at 48.8 Hz intervals). For graphical purposes, the DTFs were
smoothed by a simple Gaussian filter with a constant Q-factor of 8.

To determine a quantitative measure for the resemblance between
different DTFs, we only incorporated the frequency bins between 4 and
20 kHz, because, in this frequency domain, the head-related transfer
functions contain most of the directional information. In this way, each
DTF could be considered as a 328-dimensional vector, for which we
computed the correlations with other DTF vectors. For two different sets
of 25 DTFs (e.g., left ear vs right ear, or the free right ear vs the same ear
with a mold), this procedure results in a 25 X 25 correlation matrix,
C(€,,€,), in which each entry contains the correlation between the DTF
from the first set at elevation €,, with the DTF from the second set at
elevation e, (see Fig. 5C,F). Note that this matrix is not symmetric when
computed for different DTF sets, i.e., in general C(€,,€,) # C(€,,€, ). Also,

tion coefficients, C(e,,€,) for this mold DTF
with all free-ear DTFs was computed (o,,). The
similarity index was then taken as the average
SD for all mold DTFs:

1 N
Isim = NE T s

for N = 25 elevation angles. For example, if the mold and the free-ear
DTFs have a high correlation along the diagonal and low correlations for
off-diagonal angles (see Fig. 5F), there will be a high SD. Consequently,
I, is high. When mold and free-ear DTFs do not correlate well for
any position (see Fig. 5C), the SDs, o, and the resulting I; ,, will be low.
Paradigms

Calibration experiment. Head-position data for the calibration procedure
were obtained by instructing the listener to make an accurate head move-
ment while redirecting the dim rod LED in front of the eyes from the
central fixation LED to each of the 57 peripheral LEDs that was illumi-
nated as soon as the fixation point extinguished. Each experimental ses-
sion started with a calibration run.

Auditory localization. The listener started a trial by fixating the central
LED with the head-fixed LED pointer. After a pseudorandom period of
1.5-2.0 s, this fixation LED disappeared and an auditory stimulus was
presented 400 ms later. The listener was asked to redirect the head by
pointing the dim rod LED as accurately and as fast as possible to the
perceived location of the sound stimulus. Because the response reaction
times typically exceeded 200 ms, all responses were made under open-
loop conditions.

Hearing conditions

Before the adaptation period, acute sound localization experiments were
run under four different hearing conditions. In the FF condition, both
ears were free from spectral manipulations and had normal hearing. In
the MM condition, both ears received a mold. In the FM condition, the
listener wore the mold (right or left ear) that would also be used during
the adaptation period; in the MF condition, a mold was applied to the
other ear only (left or right) (Hofman and Van Opstal, 2003). Conditions
were changed between experimental runs with the participant in com-
plete darkness, so that he/she received no visual feedback to sounds
made, e.g., by the experimenter when entering or leaving the room.

In the adaptation condition, the participant moved and acted in his
normal living environment, with the unilateral mold continuously in
either the right (10 adaptation experiments in eight subjects) or left
(three series in three subjects) ear (Table 1). Sound localization perfor-
mance with the mold was repeatedly tested during this adaptation period
(on a daily basis, excluding weekends and holidays). The mold was worn
by mostlisteners for atleast 11 d (Table 1), except for listeners JO and RK,
whose experiments were terminated as soon as they reached stable per-
formance. Listeners JO1, MW1, and MW consented to wear the mold for
longer periods (>22 d).

Listeners either improved and reached a stable performance level or
did not improve during their adaptation period (see Results). After this
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adaptation period, the listeners were again tested for the four different
hearing conditions.

The stimuli during the experimental runs were BB noise at 40, 50, and
60 dB SPL (one complete run consisted of 3 stimulus intensities X 57
locations = 171 targets, randomized across trails). During the pre-
adaptation and post-adaptation experiments, all conditions were tested
each in two runsin 1 d (thus, listeners made 4 conditions X 2 runs X 171
targets = 1368 responses, both on the pre-adaptation and the post-
adaptation experimental day). During the adaptation period, the daily
experiments consisted of three consecutive runs (1 FM condition X 3
runs X 171 targets = 513 responses). In the analysis, although lower
stimulus intensities elicited slightly worse localization performance, all
intensities were pooled to obtain more robust parameter estimates for
the regression lines.

Two listeners (JO1 and MW1) participated also in an earlier adapta-
tion series in which the localization responses were made to HP and BB
noise stimuli with levels of 30, 40, and 50 dB SPL (one run consisted of 2
spectral bandwidths X 3 intensities X 57 locations = 342 targets, ran-
domized across trials, presented once in each session). Their molds dif-
fered for the two adaptation series, and these two series were separated by
>2 years. The responses to HP and BB stimuli were pooled in the data
analysis, because they did not differ significantly.

Participants will be referred to by their initials; MW1 and JO1 will be
used for listeners MW and JO in their first adaptation series.

Front—back reversals and confusions

Several listeners reported F-B confusions and F-B reversals with the mold
in situ, especially during the early stages of adaptation. In those cases,
stimuli presented ipsilateral to the mold were sometimes (in case of an
F-B confusion) or consistently (in case of a reversal) localized at a rear
location on the same side. To avoid having the subject make large (and
inaccurate) head movements toward these rear locations, we instead
instructed the subject to indicate the occurrence of such F-B reversals by
a button press and to generate a head movement toward the location in
the frontal hemifield that was mirrored with respect to the coronal plane
through the two ears.

Data analysis

Data calibration. The calibration experiment provided a set of 58 LED/
speaker locations and raw head-position signals. These locations were
defined in a double-pole coordinate system (Knudsen and Konishi,
1979). In this system, azimuth, o, is defined as the angle between the
sound source (or response direction), the center of the head, and the
midsagittal plane. Elevation, e, is defined as the angle between the sound
source, the center of the head, and the horizontal plane. The origin of the
(o, €) coordinate system corresponds to the straight-ahead speaker loca-
tion. Azimuth and elevation can be calculated from the polar coordi-
nates, (R, @), as follows:

o = arcsin(sin R cos ®) and & = arcsin(sin R sin ®).  (2)
These 58 fixation points and raw head-position signals were used to train
two three-layer neural networks that served to calibrate the head-
movement data, using a backpropagation algorithm based on the gradi-
ent descent method of Levenberg-Marquardt (Matlab; MathWorks,
Natick, MA).

The networks corrected for small inhomogeneities in the magnetic
fields and could adequately cope with minor cross-talk between chan-
nels. The trained networks were subsequently used to map the raw data to
calibrated two-dimensional head positions with an absolute accuracy
within 4% over the entire response range. For illustrative purposes, stim-
ulus and response coordinates were sometimes plotted in polar coordi-
nates (see Figs. 2, 12 A, B, 13). However, in the analysis, these coordinates
were always transformed into the double-pole azimuth—elevation
coordinates.

Head-movement detection. Saccadic head movements were detected
from the calibrated head-movement signals by setting thresholds to the
vectorial head velocity for onset and offset, respectively, using a custom-
made program (onset velocity, 20°/s; offset velocity, 15°/s). Detection
markings from the program were shown to the experimenter without
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Pre—Adaptation Localization Responses
Listener RK

Figure 2.  Acute effect of monaural mold. 4, Localization responses of listener RK in the
normal-hearing (FF) condition (open triangles, pooled stimulus intensities). Light-gray dots
and grid lines represent the target locations in the experimental setup. B, The elevation re-
sponse distribution in the acute right-ear mold (FM) condition is markedly degraded for most
locations. The deficit is largest ipsilateral to the mold and gradually diminishes into the con-
tralateral hemifield. Locations are represented in (R, ®) coordinates. Open symbols represent
responses to targets with & = (0, 60, 120, 180, 240, 300°), and filled symbols represent
responses to targets of the other spokes, @ = (30, 90, 150, 210, 270, 330°).

revealing any stimulus information and could be adjusted manually
when deemed necessary.

Statistics. Each listener’s responses were quantified by determining the
optimal linear fit for the following stimulus—response relationships:

ag=a+b-ar and e=c+d- e, (3)

for the azimuth and the elevation components, respectively, by minimiz-
ing the least-squares error (Press et al., 1992). In Equation 3, ay and €y
are the azimuth and elevation response components, and o and € are
the azimuth and elevation coordinates of the target. Fit parameters, a and
¢, are the response biases (offsets, in degrees), whereas b and d are the
overall response gains (slopes, dimensionless) of the azimuth and eleva-
tion response components, respectively. Note that an ideal listener
should yield gains of 1.0 and offsets of 0.0°. Also, Pearson’s linear corre-
lation coefficient, the residual error (SD around the fitted line), and the
mean absolute localization error were calculated.

To account for the strong azimuth dependence of the elevation re-
sponses in some of the hearing conditions (see Results), regressions were
also performed within restricted regions of azimuth space. By dividing
the elevation responses into 30° wide azimuth bins, each shifted in 5°
steps (thus, 25° overlap between adjacent bins), we determined the so-
called “local elevation gain,” which provides a smooth estimate of the
response gain as a function of stimulus azimuth (see Fig. 4) (Zwiers et al.,
2003).

The bootstrap method was applied to obtain confidence limits for the
optimal fit parameters in the regression analyses. To that end, 100 data
sets were generated by randomly selecting (with replacement) data
points from the original data set. Bootstrapping thus yielded a set of 100
different fit parameters. The SDs in these parameters were taken as an
estimate for the confidence levels of the parameter values obtained in the
original data set (Press et al., 1992).

Results

Acute effects of a unilateral spectral perturbation

The application of a mold could change a listener’s localization
behavior quite drastically. This is illustrated in Figure 2 (listener
RK), which compares the hearing condition with both ears free
(FF) to acute pre-adaptation right-ear mold (FM) listening. Head
movements made toward the auditory broadband stimuli were
close to the target in the FF condition, and responses were dis-
tributed across the entire hemifield (Fig. 2A). With the mold,
however, responses into the right hemifield only covered a small
range in elevations, typically near the horizontal plane. Note that
even the elevation responses into the left hemifield were limited
to a smaller range than without the mold. Thus, in line with
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the azimuth sign was reversed). For all
subjects, the effect of the mold on per-
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ceived elevation may be described by a
qualitatively similar smooth function of
azimuth. However, quantitatively, the
subjects appeared to fall into two separate
groups, here distinguished by filled gray
circles (strong effect of the mold; N = 8)
and open squares (a smaller effect of the
mold; N = 5).
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Figure 5 shows for two listeners the DTFs
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effect on his localization responses,
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stimulus laterality in the FM condition. deg, Degrees.

previous reports (Morimoto, 2001; Hofman and Van Opstal,
2003), the mold affected localization of sound-source elevation
well into the contralateral hemifield, which is a clear indication of
a binaural interaction. In contrast, the response azimuth distri-
bution was unaffected across the entire hemifield (Fig. 2 B).

To quantify the overall response patterns, we performed linear
regression on the azimuth (Fig. 3A-C) and elevation (Fig. 3D-F,
listener RK) response components (Eq. 3, Materials and Meth-
ods). For the azimuth responses, we performed separate linear
regressions in three nonoverlapping target regions along the azi-
muth axis (ipsilateral to the mold, ety > +20° near the midsag-
ittal plane, —20° < a; < +20°% and contralateral to the mold,
ar < —20°). Despite the introduction of a mold, FM sound azi-
muth localization (Fig. 3A—C, black line, FF and gray line, FM)
remained accurate and was indistinguishable from the FF condi-
tion. This holds true for all three regions, even for sound-sources
ipsilateral to the mold (Fig. 3C). This underlines the notion that
sound-source azimuth is predominantly determined by interau-
ral level and timing differences rather than by spectral cues. The
azimuth results for the other listeners were similar (data not
shown).

Also for the elevation analysis, we took the same target regions
along the azimuth axis. Insertion of a mold had a clear detrimen-
tal effect on elevation localization in the region ipsilateral to the
mold, as indicated by the regression line with a low gain (Fig. 3F,
gray line). The contralateral data (Fig. 3D) were least affected by
the mold, because the elevation gain seemed barely affected.
However, there is also a clear localization defect of the mold for
elevation responses around the midline (Fig. 3E).

To better quantify the systematic azimuth dependence of per-
ceived elevation, we refined the analysis of Figure 3 by determin-
ing the local elevation gain (see Materials and Methods). Figure 4
shows the result of this analysis for all subjects (for left-ear molds,

|
-80-40 0 40 80-80-40 0O 40 80-80-40 O

Linear regression analysis. A—C, Azimuth localization responses toward broadband stimuli from listener RKin the FF
(filled triangles) and the FM (open circles) hearing condition (same data as Fig. 2). Responses are divided in three regions:
contralateral to the mold (4, D; « << —20°), central (B, E; —20 << o < 20°), and ipsilateral to the mold (C, F; o > 20°). Thick
black lines denote the linear regression lines (Eq. 3) for azimuth (A-C) and elevation (D—F) components in the FF condition, and
thick gray lines denote the linear regression lines for responses in the FM condition. Note highly similar responses and regression
lines for the azimuth components in the FM and FF condition for all regions, whereas elevation performance clearly depends on

40 80

whereas the mold of listener JV had a mod-
esteffect on her behavior (Fig. 4). Indeed, a
qualitative comparison of the DTFs re-
vealed that the mold had a strong disrup-
tive effect on the spectral patterns in lis-
tener JO (Fig. 5A, B) but to a much a lesser
extent in listener JV (Fig. 5D, E). The di-
rectional transfer functions of JO’s right
ear (Fig. 5A) show a prominent notch at a
frequency near 5.5 kHz for a downward
elevation at —50°, which systematically
shifts to higher frequencies, until at an upward elevation of +50°,
it is found near 9 kHz. Note that this notch was nearly absent in
his mold-induced DTFs (Fig. 5B). Because of these differences,
the correlation matrix, C(€,,€,), between the two DTF sets is
generally low and without much structure (Fig. 5C) (see Materi-
als and Methods). This predicts that localization on the ipsilateral
side should indeed be worse in the acute mold condition.

The picture is quite different for listener JV. The notch in her
normal right ear runs between 6 and 11 kHz (Fig. 5D), but a
qualitatively similar pattern was seen when that ear contained the
mold (Fig. 5E). With the mold, the notch was somewhat less
pronounced and ran between 6.0 and 8.5 kHz. Despite these
differences, there is a strong correlation between the two DTF sets
near the main diagonal and a very low correlation for other loca-
tions (Fig. 5F). Apparently, the mold only induced a systematic
shift of the main spectral notch. This feature may explain the
limited effect of the mold on the gain of the elevation responses of
this listener, which only showed a shift in bias.

The correlation plots of Figure 5 appeared to provide a good
predictor for the behavior of both subjects. The responses (open
dots superimposed on the correlation plots) seemed to be pre-
dominantly guided by the loci with high DTF correlation, result-
ing in the downward bias and high gain of listener JV’s responses
and the downward bias and very poor gain in the responses of
listener JO.

To further quantify this effect, we computed the similarity
index, I, between the mold and ear DTFs for the six subjects
from which we obtained complete DTF maps (see Materials and
Methods). In Figure 6, we plotted the ipsilateral (i.e., for a > 20°)
elevation gain in the pre-adaptation FM condition as a function
of I, The figure shows that the similarity between the DTF
maps of mold and normal ear fully determined the acute local-
ization behavior of listeners with a mold. Molds that induced
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Figure4. Azimuth-dependent elevation responses in acute FM hearing. The local elevation

gain in the FM condition is a smooth function of target azimuth for all 11 listeners (13 experi-
ments). For all listeners, elevation response performance gradually degrades toward ear ipsi-
lateral to the mold (positive azimuth angles) but to a lesser extent for some listeners (open
squares) than for others (gray circles). Contra, Contralateral; Ipsi, ipsilateral; deg, degrees.

strongly dissimilar DTFs (I, low) had a strong degrading effect
on elevation performance, whereas molds that produced similar
DTFs affected the elevation gain only modestly.

Conflicting spectral shape cues

The introduction of a single mold changes the spectral cues for
one ear, whereas the other ear still provides the normal, unper-
turbed cues. Because elevation localization also relies on binaural
interactions (Morimoto, 2001; Hofman et al., 2003) (Fig. 4), the
auditory system should reconcile these two conflicting sets of
spectral cues. For the normal FF condition, the spectral-shape
cues of both ears are very similar, as illustrated by the DTF cor-
relation map for listener JO in Figure 7A. A high correlation
between the left and right ear is found only along the main diag-
onal, indicating that each elevation angle produces near-identical
spectral-shape cues in both ears.

Hofman et al. (1998) imposed new spectral cues on both ears
and showed that subjects adapted to this condition within a few
weeks. Interestingly, the molds from both ears in that study
yielded very similar DTFs (I,,, = 0.5). This is illustrated in Figure
7B for subject JO, who also participated as a subject in that study.
Although the DTF correlations are not as high as in the FF con-
dition for this subject, both molds in the MM hearing condition
produced near-identical spectral cues for similar elevations
(Iim = 0.5). Note that the mold DTFs in that study did not
correlate well with the subject’s ears (data not shown).

The binaural spectral similarity was heavily perturbed when a
mold was inserted in one ear only, resulting in low values for the
DTF binaural correlation matrix (I;,,, = 0.3). This is illustrated in
Figure 7C for listener JO in the present study. Thus, the unilateral
mold introduced a strong conflict between both sets of spectral
cues, which may have posed an additional problem for the
sound-localization system when it tried to learn the new cues.

Van Wanrooij and Van Opstal e Unilateral Spectral Cue Adaptation

The question to be studied next is whether interaural similarity of
the spectral cues is a necessary factor to guide the learning of
elevation localization.

Adaptation to a unilateral mold

After the acute localization tests with the molds, listeners wore
one mold continuously for several weeks (for details, see Table 1).
Meanwhile, they were subjected to sound localization experi-
ments on an almost daily basis. The mold had a profound effect
on elevation performance over time in all listeners, but, based on
the response patterns observed, we could distinguish two groups
of listeners. Interestingly, the two groups consisted of the same
listeners as the ones shown in Figure 4. Figure 8 illustrates these
two response modes for two representative listeners for three
nonoverlapping spatial sectors. Listener JO gradually improved
not only his elevation gain for sounds ipsilateral to the mold (Fig.
8 A, light gray lines) but also for sounds near the midsagittal plane
and even slightly for sounds on the contralateral side (Fig. 84,
dark gray and black lines, respectively). In contrast, listener JV
(Fig. 8 B) started with much higher initial gains during applica-
tion of the mold. The elevation gain on the ipsilateral side was
lower than the gain near the midsagittal plane, which in turn was
lower than the gain on the contralateral side (Fig. 4). Over time,
however, her local elevation gains did not systematically improve
but rather appeared to oscillate for all three sectors.

These two different adaptive response patterns were prototyp-
ical for the entire group of subjects. One group of seven listeners
(eight experiments: DH, JO, and JO1, KA, MW1, RK, SC, and
TG) (Fig. 4, gray symbols) gradually adapted to a clearly im-
proved performance. The other group of five listeners (JV, LC,
MV, MW, and SW) (Fig. 4, open squares) started out with a high
gain that did not show a subsequent clear improvement over time
but instead tended to display an oscillatory pattern.

To quantify the gradual change in elevation gain from ipsilat-
eral to contralateral azimuths for the first group of subjects, Fig-
ure 9 plots for six of these listeners the “local normalized eleva-
tion gain,” Gy(a), as a function of both time (abscissa) and
azimuth (ordinate), according to the following:

G(a) - GFM,ipsi

Gnle) = Gre(a) — GFM,ipsi ’

(4)

where G(a) is the measured local gain at azimuth @, Gpy,;p.s; the
local gain obtained with the pre-adaptation FM experiment for
ipsilateral locations (a > 20°), and Gggp(a) corresponds to the
value obtained for the initial free hearing condition. In this way,
Gy(a@) = 0 (dark blue) when the measured gain equals the gain
value obtained in the FM condition on the far ipsilateral side; if
Gy(a) = 1 (dark red), it equals normal listening. Gy(a) was
determined by pooling the responses of one experimental run of
171 trials with its two preceding and two succeeding runs to
obtain a smooth estimate of the improvement in localization
behavior (number of included responses per bin is on average
400; daily tests consisted of three runs) (see Materials and Meth-
ods). All listeners started out with a local elevation gain on the far
contralateral side that resembled free listening, which indicates
that the mold had little effect on these locations. On the far ipsi-
lateral side, the initial localization behavior resembled acute FM
listening. All listeners from this group gradually improved their
performance over an increasing range of azimuth angles (which is
visible as a widening of the dark red zone into ipsilateral space).
Toward the end of the experiment (top row of each panel) local-
ization of central sounds approached the FF listening condition.
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Figure5. Effectof moldson DTFs. A, DTFs of the free right ear of listener JO show a clear and distinct notch (blue) that runs from

~510 9 kHz for elevations between —50and +50°. B, This notch almost completely disappeared after application of the mold,
although a new notch formed above 9 kHz. C, Correlation between the DTFs of the original right-ear and the mold-induced DTFs
for listener JO is without much structure. A somewhat increased correlation is found for downward elevations. The superimposed
open dots show elevation judgments (ordinate) versus actual elevation (abscissa) during application of the mold: responses have
a low gain and a considerable downward bias [regression line (white): gain, 0.20; bias, —10.9°]. D, The free right ear of listener
JValso shows a clear notch in her DTFs, starting near 6 kHz, while gradually increasing to ~ 11 kHz. E, This notch, although slightly
diminished, is still present, although it now runs up to ~8 kHz. F, The DTFs of free ear and mold for listener JV have a high positive
correlation (dark red) just off the main diagonal, in line with the shift of the most prominent notch. Her acute elevation responses

J. Neurosci., June 1,2005 - 25(22):5413-5424 + 5419

subjects (Figs. 4,5). Figure 10 plots the
normalized local elevation gain as a func-
tion of time, for this group defined as
Gy(a) = Gpy(@)/Gep(@), in the same for-
mat as Figure 9. Although the gain of these
listeners was not strongly disturbed by the
mold (lowest gain value on the ipsilateral
side was ~0.7) (Fig. 10, blue), perfor-
mance of these listeners still varied system-
atically from session to session over the en-
tire azimuth range. The behavior of
listeners JV and MW (Fig. 10A, B) seemed
to follow an oscillatory pattern over time.
Also, performance of the other three lis-
teners of this group (Fig. 10C-E) followed
a similar pattern, although these listeners
did not participate long enough to follow
performance for longer than a complete
cycle. However, their behavior did seem to
oscillate with approximately the same pe-
riod as the other two listeners.

To quantify this oscillatory behavior,
we fitted a sine function through the ipsi-
lateral elevation gains (a > 20°) in the
following way:

G(r)=A-sinQ 7 fr1+e+g

(superimposed open dots) appear to be guided by the band of high positive correlation [regression line (white): gain, 0.85; bias, (5)
—5.9°). Note also considerable scatter in the responses. Isocorrelation contours at 0.25 intervals. deg, Degrees.
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Figure 6.  Elevation localization as a function of similarity index. Elevation gain for targets

ipsilateral to the mold (e > 20°) in acute pre-adaptation FM listening depends strongly on the
overall similarity index, /;,,, computed for the DTF maps between the ear and the mold (see
Materials and Methods). The higher the /;,, , the higher the elevation gain. Data are from six
subjects. r > value, 0.94.

For most listeners, the far ipsilateral (o > 20°) gains remained
low, but even there an improvement could often be observed.

In contrast, the second group of listeners had high initial ele-
vation gains at the start of the experiment, because their mold did
not perturb the spectral cues as much as in the first group of

where G(7) is the ipsilateral elevation gain
at time 7 (expressed as number of runs), A is the (dimensionless)
amplitude of the oscillation, fis the frequency of the oscillation
(inruns '), and e and g are offsets. The result of a fit through the
data oflistener JV is shown in Figure 11 A. The resemblance of the
data to a sine wave is quite striking. The correlation between data
and fit turned out to be high for all five listeners for whom this
behavioral responses pattern was observed (Fig. 11B). The pe-
riod, ™', of the fitted sine waves varied somewhat between lis-
teners but was on average ~25 runs, which amounts to 6-10 d
(Fig. 11C). The amplitude of the oscillations was low (typically,
A < 0.09) (Fig. 11D). So, although the molds for these listeners
only slightly affected the initial FM localization responses and
although no clear adaptive improvement was seen, their perfor-
mance was consistently affected throughout time and appeared
to follow a sinusoidal pattern with a period that had approxi-
mately the same duration as obtained for subjects who showed a
strong adaptive response.

Front—back reversals

The acute degradation of up—down localization during insertion
of a mold (Figs. 2—4) was not the only localization deficit. Four
listeners (in five experiments: DH, JO/JO1, LC, MV) reported
consistent F-B reversals (exemplified in Fig. 12 A for listener JO,
who perceived the largest number of reversals) that were not
present during normal FF hearing (see Materials and Methods).
The number of F-B reversals, however, decreased drastically dur-
ing the adaptation period (Fig. 12B), and this effect depended
systematically on sound level. Figure 12C shows the percentage of
E-B reversals as a function of time for the different stimulus in-
tensities for listener JO. Reversals were fewer and their occur-
rence decreased faster for the higher stimulus intensities. The
other listeners had fewer initial reversals (DH <40%, LC <20%,
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and MV <2%), and they no longer re-
ported any reversals at the end of the ad-
aptation period.

40

Test of the adaptation models

As explained in Introduction (Fig. 1), ad-
aptation to a monaural spectral perturba-
tion could in principle be attributable to
two different mechanisms: either the
sound localization system has acquired a
new spectral representation of the per-
turbed ear (adaptation at the spectral-to-
spatial mapping stage), or the system ig-
nores the conflicting spectral cues
altogether and expands the influence of
the intact ear into the contralateral hemi-
field (adaptation at the binaural-weighting
stage). To dissociate these possibilities, we
subjected our listeners before and after the
adaptation period to four different hearing conditions when
making their localization responses: without molds (i.e., both ears
free, FF), with one mold in either the right or left ear that was worn
during the adaptation period (FM), a single mold in the other, un-
adapted, ear (MF), and finally, with binaural molds (MM).

If learning had taken place at the binaural-weighting stage
(Fig. 1), localization in the MM condition would be impossible,
because no unperturbed spectral-shape cues would remain. Con-
versely, if the auditory system had learned to calibrate the new
spectral-shape cues (spatial-mapping stage), after adaptation
both the FM and MM condition would show comparable im-
proved localization accuracy on the side of the mold.

Figure 13 shows the raw localization responses of subject JO
before (Fig. 13A-D) and after (Fig. 13E-H) adaptation for the
four hearing conditions. A comparison between B and F indicates
a clear improvement of localization accuracy after the adaptation
period for the FM condition. In contrast, the response distribu-
tions for the FF and MF conditions did not appear to have
changed after FM adaptation. The critical test, however, is pro-
vided by the MM condition, for which the response distribution
also appeared to have expanded across the azimuth range. Thus,
a qualitative assessment of the results for this listener favors ad-
aptation at the level of spectral-to-spatial mapping.

The other adapted listeners showed very similar behavior in
the four hearing conditions as listener JO. To pool the results for
these listeners, in Figure 14, we plotted the differences in local
response gain between the pre-adaptation and post-adaptation
localization sessions for each of the four localization conditions.
The results are averaged across the seven adapted subjects (N = 8
experiments) and are shown as a function of sound-source azi-
muth. Our data clearly demonstrate that the FM condition has
improved, most prominently on the side ipsilateral to the mold,
but even for locations well into the contralateral hemifield (Fig.
14 A, dark gray lines). This result implies that sound localization
plasticity does not require (near-) identical spectral inputs from
the two ears.

Although the pre-adaptation and post-adaptation results for
FF and MF hearing were, on average, not identical (the differ-
ences, although small, were not zero), there was no systematic
azimuth-dependent change in localization performance for these
conditions (see Discussion).

More importantly, however, the MM hearing condition
showed a clear ipsilateral improvement in localization perfor-
mance across the azimuth domain. The improvement of the MM
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DTF correlation maps between the left and right ear. 4, DTFs for the free left and right ears are nearly identical and
unique for each elevation angle, which shows as a high positive correlation (dark red) only on the main diagonal and a high
similarity index (/;, = 0.5). B, Mold-induced DTFs for left and right ears in the study by Hofman etal. (1998) were also very similar
(Lim = 0.5). G, DTFs of the free left ear and right ear with molds from this study, however, are very dissimilar (/;,, = 0.3), because
no appreciable positive correlation is found on the main diagonal. Data are from listener JO. Same format as Figure 5A. deg,
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Figure 8.  Two different adaptation responses. Three distinct target azimuth sectors are

selected to show the change in elevation gain as a function of time during adaptation for two
representative subjects (black line, « << —20°; light gray line, locations ipsilateral to the mold,
a > +20° dark gray line, locations near the midline, —20 < « << +20°). 4, Listener JO.
Sounds ipsilateral to the mold were initially badly localized (low gain), but, after ~10sessions,
the elevation gain reached a plateau at a value of 0.6. Also, localization near the midline im-
proved gradually over time. B, No systematic improvement of ipsilateral, central, or contralat-
eral responses was obtained for listener JV. Contra, Contralateral; Ipsi, ipsilateral.

condition was quite comparable with the improvement obtained
for FM hearing (compare Fig. 14 B, dark gray lines, with Fig. 1C).
From these data, we conclude that adaptation has taken place at
the spectral-to-spatial mapping stage for all listeners.

Discussion

Summary

We studied the response of the human sound-localization system
to a long-term monaural spectral perturbation and showed that
all listeners had clear signs of adaptation. Seven subjects (8 of 13
experiments) regained an improved elevation performance
within 11 d (Fig. 9), whereas the elevation gain of five listeners
oscillated (Figs. 10, 11). Adaptation to spectral-cue manipula-
tions depended on the correlation of the resulting DTFs with the
subject’s own ears (Figs. 4—6) and extended well into the con-
tralateral hemifield. We compared localization responses with
the adapting mold (FM hearing) to results under normal hearing
conditions (FF), with a mold in the other ear (MF), and with
listening with binaural molds (MM). We conclude from our ex-
periments that the human auditory system is capable of an ear-
specific spectral adaptation. This plasticity predominantly acts at
the stage of neural processing when the spectral-shape cues are
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Figure9. Adaptation results for listeners showing improvement. Normalized local elevation

gain (color coded; Eq 4) is plotted as a function of target azimuth (ordinate) and time (number
runs, abscissa). Dark red color corresponds to normal (FF) localization behavior for the associ-
ated bin, and dark blue equals the acute FM behavior for sounds ipsilateral to the mold (i.e., no
adaptive change). Listeners DH (4), JO1 (B), KA (€), MW1 (D), RK (E), and SC (F) all adapted
gradually to the new spectral cues induced by the mold, because their elevation response
behavior gradually improved toward FF behavior within 16 runs. This improvement shows as a
gradual expansion of red and yellow bins toward the right. Similar adaptive behavior was
obtained for listeners JO (Fig. 8 4) and TG (data not shown). contra, Contralateral; ipsi, ipsilat-
eral; deg, degrees.

transformed into spatial information rather than at the level of
binaural interactions (Figs. 1, 14).

Comparison with other studies

Previous studies have reported on the acute effect of a unilateral
mold on sound localization and demonstrated a contribution of
each ear within its opposite hemifield (Humanski and Butler,
1988; Morimoto, 2001; Hofman and Van Opstal, 2003). Our data
further corroborate these findings (Figs. 2—4), and we used these
results to dissociate different adaptive mechanisms.

Hofman et al. (1998) studied sound localization plasticity in
response to binaural molds for up to 4 weeks, during which sub-
jects gradually relearned to localize elevation. We extended these
experiments in several ways: First, a unilateral mold confronts the
system with radically different spectral cues for each ear (Fig. 7C).
In the Hofman et al. (1998) study, the thin plastic molds yielded
spectral cues that differed substantially from the original cues but
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Figure 10.  Localization behavior for listeners with high pre-adaptation FM gains. Local
elevation gain during FM adaptation (here normalized to the pre-adaptation FF gain, G, /Gy )
as a function of time for the responses of listener JV (4), MW (B), LC(C), MV (D), and SW (E) is
shown. Note the oscillatory behavior, with similar periods for all listeners (same scaling in all
panels) and the relatively high initial gains (see color bar; dark blue is ~0.7) (compare with Fig.
9). Contra, Contralateral; Ipsi, ipsilateral; deg, degrees.
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Figure 11.  Oscillatory behavior. Results of fitting a sine function through the ipsilateral
elevation gains (cc > 20) for the five listeners of Figure 10 (least squares; Eq. 5). 4, Data of
listener JV. B, Pearson’s correlation between fitted curve and actual data are high forall listeners
(meanr = 0.88). C, Fitted periods (1/f) fall between 19 and 29 runs (6 —10 d; mean period of 25
runs). D, Fitted amplitudes are low (<0.09) and vary somewhat between listeners (mean of
0.06).

remained approximately similar for the two ears (Fig. 7B). Sec-
ond, to assess binaural interactions, the measurement range was
extended to =75° [vs =30° in the study by Hofman et al. (1998)].
Finally, by comparing four different hearing conditions, we
could dissociate the different models about the locus of adap-
tation (Fig. 14).
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Figure 12.  F-B reversals. A, Target locations for which listener JO reported F-B reversals in
thefirst pre-adaptation FM run (171 responses, 3 intensities). Symbol size indicates the number
of reversals (from 1 to a maximum of all 3 responses; gray dots indicate that no F-B reversals
were reported for the targets). B, F-B reversalsin the first post-adaptation FM run. Locations are
represented in (R, d) coordinates. €, Fraction of F-B reversals as a function of time for different
sound levels for this listener. The higher the sound level, the faster the F-B confusions
disappeared.

Learning behavior

All subjects showed clear signs of adaptation to the new spectral
cues. Seven listeners improved their performance and reached a
plateau in their elevation gain within ~7 d. These subjects did not
reach optimal localization performance (Fig. 9), because the far
ipsilateral elevation gain remained below FF performance in
most subjects. This could be attributable to a lack of sufficient
spectral detail in the DTFs of the mold, resulting in a signal-to-
noise problem (Good and Gilkey, 1996; Kulkarni and Colburn,
1998), to insufficient training time, to a limit in the capacity of the
CNS to interpret altered spectral cues, or to a combination of
these factors.

Three listeners kept the mold in situ well after maximal per-
formance was reached. Nevertheless, performance did not im-
prove any further, suggesting that insufficient training time did
not underlie imperfect overall performance in our experiments.

Interestingly, although five listeners never reached a stable
plateau, their elevation gains oscillated with a period that was
comparable with the learning rate of the other seven subjects
(Figs. 9-11).

We interpret this behavior as follows: initially, at the acute
pre-adaptation FM test, each subject’s responses are based on an
interpretation of the normal DTFs, which, because of the high
correlation in this group, yielded high elevation gains (Fig. 5, 6).
Later, sensory feedback from the environment signals consistent
errors between perceived and actual target elevations, which in-
duce a learning response. However, because of the high DTF
correlations between the normal ear and the mold, a given DTF
always corresponds to two different but relatively nearby and
equally strong elevation angles. Apparently, the sound-
localization system cannot deal with this ambiguity.

Potential mechanisms
Our results indicate that adaptation to long-term spectral pertur-
bation is ear specific and predominantly acts at the stage of
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spectral-to-spatial mapping (Fig. 1). The conceptual schemes in
Figure 1, A and B, represent the general flow of acoustic process-
ing in the auditory system and offer a functional, rather than
anatomical, description of the mechanisms extracting elevation.
Our experiments do not allow a firm dissociation of either
scheme, because the predictions for the different control experi-
ments are the same (Fig. 1C). However, the distinction is not
trivial, because binaural interaction and spectral-to-spatial map-
ping are both nonlinear (but as yet unknown) processes. There-
fore, their order matters, but different experiments are needed to
determine the order.

Signals are initially processed monaurally in the cochlear nu-
cleus. Its dorsal part (DCN) has been implicated in the processing
of spectral-shape information (Young and Davis, 2002; Reiss and
Young, 2005). However, adaptation relies on feedback (Knudsen,
2002), either from vision, head-motion signals from propriocep-
tive or vestibular sources, or efference copies. There is no evi-
dence that such feedback signals reach the DCN. In contrast, the
midbrain inferior colliculus (IC) does receive a signal about eye
position (Groh et al., 2001; Zwiers et al., 2004). In barn owls, the
external nucleus of the IC receives topographically organized vi-
sual inputs from the superior colliculus (SC) that are crucial for
the formation of its auditory space map (Brainard and Knudsen,
1993; Gutfreund et al., 2002; Debello and Knudsen, 2004). Con-
vergence of visual and auditory inputs was also demonstrated in
the brachium of the ferret IC (Doubell et al., 2000). The presence
of different non-acoustic feedback signals in the IC could thus
render it as a potential candidate for sound-localization plasticity
also in mammals (King et al., 2001; King, 2002).

Other factors

Monaural adaptation to a mold did not induce an aftereffect,
because the FF test after removal of the mold immediately yielded
accurate behavior in all subjects (Figs. 13, 14). Similarly, Hofman
et al. (1998) reported the complete absence of an aftereffect in
their binaural adaptation study. However, the FF control condi-
tion resulted, on average, in a slightly increased gain for the post-
adaptation recordings across the entire azimuth domain (Fig.
14 A, light gray lines). Possibly, this effect is caused by a change in
the open-loop head-movement strategy of the listeners. Because,
during adaptation and over many recording sessions, listeners
gradually become more confident in their own localization be-
havior, they might tend to generate slightly larger vertical head
movements. It is difficult to control for such potentially con-
founding factors, because our experiments involve the complete
action-perception cycle.

Similarly, a small negative difference was observed for the MF
hearing condition (Fig. 14 B, light gray lines). This effect could
result from small adjustments at the binaural-weighting stage. If
the normal-ear weighting slightly increases during adaptation,
the insertion of a mold in that ear should lead to less accurate
localization responses as before the adjustments. These relatively
small effects notwithstanding, the strong and azimuth-
dependent improvement of localization performance in the MM
condition was large for all subjects and comparable with the FM
improvement. Therefore, adaptation at the spatial-mapping
stage remains by far the dominant factor to explain the response
behavior across the population of subjects.

Calibration

Studies in the barn owl (Knudsen and Knudsen, 1985; Brainard
and Knudsen, 1993) have shown that calibration of its sound-
localization system requires visual input. Also in ferret (King et
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Figure 13.

F) and MM (D, H) conditions (compare with Fig. 1C).
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Figure 14.  Test of adaptation models. Differences in local elevation gain as function of

azimuth between pre-adaptation and post-adaptation listening for four different hearing con-
ditions (FF, MM, MF, and FM), pooled across the seven listeners (8 experiments) that showed
adaptive improvement (DH, JO and JO1, KA, MW, RK, SC, and TG; see Figs. 84, 9). Note the
similarity in improvement between the FM (circles) and MM (squares) hearing conditions and
the absence of a systematic improvement in the MF (triangles) and FF (diamonds) hearing
conditions (compare with Fig. 1C). deg, Degrees.

al., 1988), vision guides the formation of a topographic map of
auditory space in the midbrain SC. Recent human studies have
indicated that the congenitally blind localize well under simple
acoustic conditions (Zwiers et al., 2001a) but that their elevation
performance breaks down in noisy environments (Zwiers et al.,
2001b). Conversely, normal-sighted subjects reduced the local
gain of their sound-localization responses after wearing minify-
ing glasses with a restricted visual field (Zwiers et al., 2003). These
findings corroborate the hypothesis that, also in humans, vision
is used to calibrate, or fine-tune, sound localization in frontal
space. Apart from vision, also auditory feedback may aid in the
calibration of auditory space. For example, after removing the
spectral cues in young ferrets by pinnectomy, the topographic
acoustic map in their SC does not develop (Schnupp et al., 1998).

In our experiments, subjects were free to move around in their
usual habitat. Therefore, both active vision and the use of self-
generated eye and head movements may have contributed to the
adaptive response.

Outlook and applications

Our results indicate that the auditory system can learn to use new
spectral cues for a single ear within 10 d, provided that the cues
are sufficiently different from the subject’s own ear. This has

Effect of FM adaptation on localization behavior of listener JO. Raw localization responses are plotted in (R, ®)
coordinates for the various pre-adaptation (4—D) and post-adaptation (E~H) conditions. Note that elevation response distribu-
tions for the FF (A, E) and MF (C, G) conditions remain similar, whereas there is a clear improvement for localization in the FM (B,
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important implications for spatial hearing
after surgery that involves the pinna. It
should also be considered for potential ap-
plications in the field of acoustic virtual
reality. Our results further suggest the pos-
sibility that monaurally deaf listeners
could learn to use their available spectral
cues for localization on their deaf side,
provided their binaural weighting could
learn to favor their intact ear. We recently
demonstrated a considerable variability in
the localization performance of these lis-
teners that could be fully explained by
their using (or lack of using) spectral-
shape information (Van Wanrooij and
Van Opstal, 2004). Training dedicated to
use the spectral cues should therefore be
considered to help these listeners to cope
with the complexities of the acoustic envi-
ronment and thereby for their safer navi-
gation through the everyday world.
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